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SUMMARY 

A three-field arbitrary Lagrangian-Eulerian (ALE) finite element/volume formulation for coupled transient 
aeroelastic problems is presented. The description includes a rigorous derivation of a geometric conservation law 
for flow problems with moving boundaries and unstructured deformable meshes. The solution of the coupled 
governing equations with a mixed explicit (fluid)/implicit (structure) staggered procedure is discussed with 
particular reference to accuracy, stability, distributed computing, I/O transfers, subcycling and parallel processing. 
A general and flexible framework for implementing partitioned solution procedures for coupled aeroelastic 
problems on heterogeneous andor parallel computational platforms is described. This framework and the explicit/ 
implicit partitioned procedures are demonstrated with the numerical investigation on an iPSC-860 massively 
parallel processor of the instability of flat panels with infinite aspect ratio in supersonic airstreams. 
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1. INTRODUCTION 

In order to predict the dynamic response of a flexible structure in a fluid flow, the equations of motion 
of the structure and the fluid must be solved simultaneously. One difficulty in handling numerically the 
fluid/structure coupling stems from the fact that the structural equations are usually formulated with 
material (Lagrangian) co-ordinates while the fluid equations are typically written using spatial 
(Eulerian) co-ordinates. Therefore a straightforward approach to the solution of the coupled fluid 
structure dynamic equations requires moving at each time step at least the portions of the fluid grid that 
are close to the moving structure. This can be appropriate for small displacements of the structure but 
may lead to severe grid distortions when the structure undergoes large motion. Several different 
approaches have emerged as alternatives to partial regridding in transient aeroelastic computations, 
among which we note the arbitrary LagrangianEulerian (ALE) f~rmulation,'-~ the co-rotational 
approach?' dynamic meshes,6 which are closely related to the ALE concept, and space-time 
formulations.' All these approaches treat a computational aeroelastic problem as a coupled two-field 
problem. 

However, the moving mesh can be viewed as a pseudostructural system with its own dynamics' and 
therefore the coupled transient aeroelastic problem can be formulated as a three-rather than two-field 
problem: the fluid, the structure and the dynamic mesh. The semidiscrete equations governing this 
three-way coupled problem can be written as 
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where t designates the time, 5 is the position of a moving fluid grid point, W is the fluid state vector, A 
results from the finite elementholume discretization of the fluid equations, P is the vector of 
convective ALE fluxes,' R is the vector of diffusive fluxes, q is the structural displacement vector,fint 
denotes the vector of internal forces in the structure,fex' is the vector of external forces, M is the finite 
element mass matrix of the structure, A?, b and k are fictitious mass, damping and stiffness matrices 
associated with the fluid moving grid and constructed to avoid any parasitic interaction between the 
fluid and its grid or between the structure and the moving fluid grid8 and K, is a transfer matrix that 
describes the action of the motion of the structural side of the fluidstructure interface on the fluid 
dynamic mesh. For example, A?=d=O and k=kR, where Z? is a rotation matrix, correspond to a 
rigid mesh motion of the fluid grid around an oscillating aerofoil, and A?= b = 0 includes the spring- 
based mesh motion scheme introduced in Reference 6 and the continuum-based updating strategy 
described in Reference 7 as particular cases. 

Each of the three components of the coupled problem described by (1) has different mathematical 
and numerical properties and distinct software implementation requirements. For Euler and Navier- 
Stokes flows the fluid equations are non-linear. The structural equations and the semidiscrete equations 
governing the pseudostructural fluid grid system may be linear or non-linear. The matrices resulting 
from a linearization procedure are in general symmetric for the structural problem but are typically 
unsymmetric for the fluid problem. Moreover, the nature of the coupling in (1) is implicit rather than 
explicit, even when the fluid mesh motion is ignored. The fluid and the structlire interact only at their 
interface via the pressure and the motion of the physical interface. However, for Euler and Navier- 
Stokes compressible flows the pressure variable cannot be easily isolated either from the fluid 
equations or from the fluid state vector ct: Consequently, the numerical solution of (1) via a fully 
coupled monolithic scheme is computationally challenging and software-wise unmanageable. 

Alternatively, equations (1) can be solved via partitioned  procedure^.^^'^ This approach offers 
several appealing features, including the ability to use well-established discretization and solution 
methods within each discipline, simplification of software development efforts and preservation of 
software modularity. Traditionally, transient aeroelastic problems have been solved via the simplest 
possible partitioned procedure whose cycle can be described as follows: (a) advance the structural 
system under a given pressure load; (b) update the fluid mesh accordingly; (c) advance the fluid system 
and compute a new pressure load. 13-16  Occasionally, some investigators have advocated the 
introduction of a few predictorlcorrector iterations within each cycle of this three-step staggered 
integrator in order to improve ac~uracy, '~ especially when the fluid equations are non-linear and treated 
implicitly.'' In this paper we focus on the design of a broader family of partitioned procedures where 
the fluid flow is integrated using an explicit scheme and the structural response is advanced using an 
implicit one. We address important issues pertaining to numerical stability, subcycling, accuracy versus 
speed trade-offs, implementation on heterogeneous computing platforms and interfield as well as 
intrafield parallel processing. 



TIME INTEGRATION OF COUPLED AEROELASTIC PROBLEMS 809 

We begin in Section 2 with the discussion of a geometric conservation law for finite element and 
finite volume ALE fluid formulations and its implications on the time integration of the semidiscrete 
equations (1) that govern the three-way coupled aeroelastic problem. Next we introduce in Section 3 a 
partitioned solution procedure where the fluid flow is time integrated using an explicit scheme and the 
structural response is advanced using an implicit one. This particular choice of mixed time integration 
is motivated by the following facts: (a) the aeroelastic response of a structure is often dominated by 
low-frequency dynamics and therefore is most efficiently predicted by an implicit time integration 
scheme; (b) we have previously developed a massively parallel explicit finite elementholume Navier- 
Stokes ~olver ’~-~’  that we wish to reuse for aeroelastic computations. In practice the stability limit of 
this partitioned procedure has proved to be governed only by the critical time step of the explicit fluid 
solver. In Section 4 we describe a subcycling procedure that does not limit the stability properties of a 
partitioned time integrator. In Section 5 we address important issues related to interfield parallelism 
and design variants of the algorithm presented in Section 3 that allow simultaneous advancing of the 
fluid and structural systems. Section 6 focuses on the implementation of staggered procedures on 
distributed and/or heterogeneous computational platforms. Section 7 describes the application of the 
work presented in this paper to the numerical investigation of the instability of flat panels with infinite 
aspect ratio in supesonic airstreams. Finally, Section 8 concludes this paper. 

Most of the theoretical foundation of the staggered time integrators discussed herein can be found in 
a companion paper.I2 In particular we refer the reader to Reference 12 for the theoretical proofs of the 
propositions made in this paper. 

2. A GEOMETRIC CONSERVATION LAW FOR UNSTRUCTURED ALE METHODS 

For the sake of brevity we present the mathematical derivations for the case of two-dimensional Euler 
flows and finite volume formulations and give only the final results for the case of three-dimensional 
problems. 

2. I .  A three-jield ALE formulation 

Let R c R2 be the flow domain of interest and r be its moving and deforming boundary. The 
conservative law form of the equations describing Euler flows can be written in ALE form as 

TIa+ JVg . P ( W )  = 0, S C ( W )  = S ( W )  - tw ,  

where a and 5 denote respectively the Lagrangian and instantaneous Eulerian positions of a fluid grid 
point, J =  det(d5ida) is the Jacobian of the frame transformation Q -+ 5, W is the fluid state vector, 9‘ 
denotes the convective ALE fluxes and 5 is the ALE grid velocity, which may be different from the 
fluid velocity and from zero. Whether the finite volume or finite element method is used for the spatial 
discretization of (2), the resulting semidiscrete equation can be written as 

where A denotes the area of a cell or a finite element and E;” denotes the numerical approximation of 
the convective ALE fluxes. 

Several procedures have been proposed for updating the ALE variables 5 and 4, most of which can 
be summarized as viewing the fluid domain (or its grid) as a pseudostructural system governed by 
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where a dot superscript designates a time derivative, $f, d and k are fictitious mass, damping and 
stiffness matrices and f is a vector of generalized forces that controls the fluid grid motion. For 
example, Batina’s6 spring-based mesh updating scheme corresponds to setting $f = d = 0 and 
attaching a fictitious spring between each pair of connected grid points which determines k. 
Alternatively, and b can be constructed from k as 

if=&, b = pk, ( 5 )  

where the two scalars a and f i  are such that the pseudostructural system (4) is critically damped. In all 
cases equation (4) is usually driven by enforcing the continuity between the grid motion and the 
structural displacement and/or velocity at the fluidstructure boundary: 

r ( t )  = q(t) on r F / S  c r, 5(t )  = q(t) on rF/S c r. (6) 

j(t) = & A t ) ,  (7) 

Therefore f can be written in general as 

where K, is a transfer matrix that describes the action of the motion of the structural side of the fluid/ 
structure interface on the fluid dynamic mesh and q(t) is determined from the structural equation of 
dynamic equilibrium 

M q  +fnt(q) =f””(W(t,  t ) ) .  (8) 

In general the governing parameters of Z?, e.g. the spring coefficients in Batina’s scheme,6 are chosen 
and optimized to avoid mesh distortion as much as possible. However, this is not sufficient for 
correctly computing flow problems with moving boundaries and deformable meshes via an ALE 
algorithm. Next we show that the ALE fluid grid must obey a geometric conservation law (GCL) 
equivalent to that developed in Reference 23 for moving body-fitted curvilinear grids and the Beam- 
Warming24 finite difference scheme. 

2.2. Conservation law for the grid displacement and velocity fields 

Let 9-h be a standard triangulation of 0. A vertex of a triangle T is denoted by Si and the set of its 
neighbouring vertices by K(i). At each vertex Si a cell Ci is constructed as the union of the subtriangles 
resulting from the subdivision by means of the medians of each triangle of r h  that is connected to Si 

Figure 1. Control volume in an unstructured mesh 
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(Figure 1). The boundary of Ci is denoted by aCi and the unit vector of the outward normal to aC, by vj. 
The union of all these N, control volumes constitutes a discretization of the domain Q: 

N. 

Let also At and t" = nAt denote respectively the chosen time step and the nth time station. Integrating 
equation (3) between t" and t"" leads to 

= A(("+')W"+' - A(5")W" + F C ( W ( ( ,  t ) ,  c,  4) dt = 0. 1: (9) 

In a finite volume formulation A is a diagonal matrix that contains the areas (volumes) A j  of the cells 
and F results from the spatial integration of the convective fluxes on the cell boundaries. For each cell 
C,, F: can be written as 

where .F+ and 8- designate the classical flux splittingz5 in the absence of a moving mesh and are 
given by 

Tk5 most important issue in the solution of (1) via an ALE method is the proper evaluation of 
Jf: F C ( W ( ( ,  t ) ,  (, 4)  dt in (9). In particular it is crucial to establish where the fluxes must be 
integrated: on the mesh configuration at t= t" (r), on that at t =  tn+l (("+') or in between these two 
configurations. 

Let W* denote a given uniform state of the flow. Clearly a proposed solution method cannot be 
acceptable unless it conserves a uniform flow. Substituting FV = FV+' = W* in (9) and rewriting this 
equation at the cell level gives 

P+' 

[Ai(("+') -Ai(5")]W* + st. F;(W*, (, i) dt = 0. (12) 

From (10) it follows that 

Given that the integral on a closed boundary of the flux of a constant function is identically zero, i.e. 

it follows that 



812 C. FARHAT, M. LESOINNE AND N. MAMAN 

Hence substituting (1 5 )  into (1 2) yields 

which can be rewritten as 

Equation (1 7) defines a GCL that must be verified by any proposed ALE mesh updating scheme. This 
law states that the change in area (volume) of each control volume between 2" and t"+l must be equal to 
the area (volume) swept by the cell boundary during At = fn+' - t" (Figure 2). Therefore the updating 
of ( and 4 cannot be based on mesh distortion issues alone when using AL solution schemes. 

2.3. Implications of the GCL 

From the analysis presented in the previous subsection, it follows that an appropriate scheme for 
evaluating$+'FC(W((, t ) ,  5 ,  4)  dt in (9) is a scheme that respects the GCL (17). Note that once a 
mesh updating scheme is given, the left-hand side of ( 1  7) is always exactly computed. Hence a proper 
method for evaluating Jr+ 'FC(W(( ,  t ) ,  (, 4 )  dt is a method that obeys the GCL and therefore 
computes exactly the right-hand side of (17), i.e.f:+' 4 . vi ds dt. Given that Xi(()  is the union 
of segments, it suffices to consider the integration of ( . v, along a segment [ab]: 

r+I 
I[ub] = Irn 4 * v h dt. (18) 

ob1 

Let 5 ,  and ( 6  denote the instantaneous positions of two connected vertices a and b (Figure 3). The 
position of any point on the edge [ab] during the time interval [t"' t"+'] can be parametrized as: 

<(t> = r t u ( t )  + (1  - Y ) t b ( t ) ,  ? E [o, 11, E [f, f + ' 1 ,  i ( t )  = r i u ( t )  + (1 - Y ) k b ( t ) ,  (19) 
where 

( u ( t )  = d(t)(i+' + [I - d(t)](i9 t E [fn, f " ] ,  ( b ( t )  = d(t)(;+' + [I - d(t)](; (20) 

T"+ 

Figure 2. GCL for ALE formulations (two-dimensional case) 
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Figure 3.  Parametrization of a grid edge 

and 6(t) is a real function that satisfies 

6(tn) = 0, S(tn+') = 1. 

Substituting (1 9) and (20) into (1 8) yields 

where 1 is the length of the edge [ab] and 

The mesh velocities 4, and k6 can be obtained from the differentiation of (20) as 

4, = j(t)(t:+' - 5:h 46 = j(t)(t"b+' - 5;)  
and I[,*] can be finally written as 

1 

= t S, - t:) + ct;" - 5;)1H[W:+' - ( ; + I )  + (1  - wt: - <;)I d6. (24) 

Clearly the integrand of ZrUbl is linear in 6. Therefore Z[,b] can be exactly computed using the midpoint 
rule provided that equations (23) hold, i.e. 

(25) 
A6 
At 

4 = b(t)(y+' - 5,) = -(<"+' - t"), 
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which in view of (21) can also be written as 

In summary, the GCL derived herein shows that for two-dimensional problems the integrand of 
$+IFc( W(t, t ) ,  (, 4)  dt in (9) must be evaluated at the midpoint configuration and this integral must 
be computed as 

1;' F~(w(<, t ) ,  t, 4 )  dt = AtFC(Wk, < n + 1 / 2 ,  

where the superscript k depends on the time discretization of the fluid flow equation. 
Similarly it can be shown that in the three-dimensional case the integrand of ZLobl, where [abc] 

denotes a facet of a tetrahedron (Figure 4), is quadratic in 6 and therefore ZLabcl can be exactly 
computed using the two-point rule provided that equations (23) hold. Hence the only method for 
evaluatingf;f*lFC(W(<, t), t, 4) dt that respects the GCL (17) in the three-dimensional case is 

At 
f;f"Fc(W((, t ) ,  5 ,  2) dt = TIFc(Wkl ,  tml ,  ef1l2) +FC(Wk2, tm*, 4n+1/2)], 

where the superscripts kl and k2 depend on the time discretization of the fluid flow equation. 
Note that the proper mesh configurations and computational procedures for evaluating 

fi""Fc(W((, t ) ,  (, 4 )  dt are not the same for two- and three-dimensional problems (equations (27) 
and (28)). However, in both cases the proper evaluation of the mesh velocity field is the same: 

The above formula for updating is intuitive and has certainly been 'naturally' used by several 
investigators when I@= b = 0, independently from any conservation law issue (see e.g. Reference 6). 
However, when the pseudostructural fluid grid system is characterized by A42 0 andor # 0, the 
mesh velocity field computed by the time integrator applied to the solution of (4) is not 
guaranteed to be equal to = (("+I - Sn)/At. In that case, satisfying the GCL requires 

(a) using the mesh velocity computed by the time integrator applied to (4) only for evaluating 
("+I. 
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Figure 4. GCL for ALE formulations (three-dimensional case) 

(b) using the mesh velocity p+112 = (tn+' - (?)/At in the evaluation of Lft' F c ( W ( t ,  t ) ,  (, 4 )  dt 

On the other hand, when a pseudostructural fluid grid system is constructed with &f = b = 0 (e.g. 
Batina's network of springs6), it is not always possible to satisfy both continuity equations (6)  without 
violating the GCL. For example, if the displacement continuity condition ((f) = q(t) is enforced at the 
fluidstructure interface rF/S ,  which is usually the case, then respecting the GCL implies computing a 
mesh velocity field on r F / S  that is equal to 

via (27) or (28). 

In that case, satisfying also the velocity continuity condition 4(t)  = q(t)  on r F / S  requires that 
n+l 

q"+'/2 = 4 -4" At on r F J S 9  

which is not enforced by all structural time integrators. Therefore it is not always possible to satisfy the 
continuity between both the displacement and velocity of the structure and those of the fluid grid 
without violating the GCL. 

Unfortunately, a discontinuity between the velocity of the structure and that of the fluid mesh at the 
fluidstructure interface can perturb the energy exchange between the fluid and the structure. Luckily, it 
can be shownz6 that when the implicit midpoint rule is used for advancing the structure and the 
displacement condition ( ( t )  = q(t) is enforced on rF/S,  the following equalities hold: 
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Hence, if the structural equations are integrated with the implicit midpoint rule, it becomes possible to 
satisfy both continuity equations (6) while still respecting the GCL. Among others, this important 
result justifies the choice of the trapezoidal rule as the implicit time integrator for the low-ffequency- 
dominated structural equations (8). 

Finally, in order to highlight the impact of the GCL on transient coupled aeroelastic computations, 
we report in Figure 5 two computed histories of the non-dimensional lift for an elastic panel in a 
transonic regime (freestream Mach number M ,  = 0.84) using an ALE solution scheme that satisfies 
the GCL and one that violates it at the fluidlstructure interface. In both cases the time integration is 
carried out with an explicit (fluid)/implicit (structure) partitioned procedure and a time step that 
respects the stability limit of the coupled aeroelastic problem. For this example, violating the GCL is 
shown to introduce undesirable spurious oscillations in the lift prediction. 

3. A STAGGERED EXPLICIT/IMPLICIT TIME INTEGRATOR 

3.1. Background 

When the structure undergoes small displacements, the fluid mesh can be frozen and 'transpiration' 
fluxes can be introduced at the fluid side of the fluid/structure boundary to account for the motion of 
the structure. In that case the transient aeroelastic problem is simplified from a three- to a two-field 
coupled problem. Furthermore, if the structure is assumed to remain in the linear regime and the fluid 
flow is linearized around an equilibrium position WO (note that most fluid/structure instability problems 
are analysed by investigating the response of the coupled system to a perturbation around a steady 
state), the semidiscrete equations governing the coupled aeroelastic problem become (see Reference 12 
for details) 

(",")=(: :*)("tt"). (*;) ( t = O )  =("gw) 0 

-0.0004 

-0 0005 

-0 0006 

-0.0007 

-0.0008 

-0.0009 

-0.001 

NOti-DlMPNSlOlllL LIFT 

NON-DIXENSIONAI r r a  

-0 001 1 
0 0 001 0,002 0.003 0004 0.005 0.006 0.007 0,008 0009 0.01 

Figure 5. Flat panel in a transonic regime: effect of GCL on lift 

(33) 
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Here 6W is the perturbed fluid state vector, 

Q =  (;) 
is the structure state vector, A* results from the spatial discretization of the flow equations (2), B is the 
matrix induced by the transpiration fluxes at the fluid/structure boundary rF/S, C is the matrix that 
transforms the fluid pressure on rFIS into prescribed structural forces and 

where M, D and K are the structural mass, damping and stiffness matrices. 
A mathematical discussion of the time integration of (33) via implicitlimplicit and explicithmplicit 

partitioned procedures can be found in Reference 12. Here we focus on the more general three-way 
coupled aeroelastic problem (1). Based on the mathematical results established in Reference 12 for 
solving (33), we design a family of explicithmplicit staggered procedures for time integrating (1) and 
address important issues pertaining to accuracy, stability, distributed computing, I/O transfers, 
subcycling and parallel processing. 

3.2. ALGO: a partitioned explicithmplicit algorithm for the three-Jield formulation 

For simplicity and without any loss of generality we focus on the case of two-dimensional Euler 
flows and linear structural vibrations. For three-dimensional inviscid flows, equations (28) should be 
used instead of equations (27). From the results established in Section 3, it follows that the 
semidiscrete equations governing the three-way coupled aeroelastic problem can be written in that case 
as 

A(t"+')W"+' - A(Y)W" + AtFC(Wk, tn+If2, ? + I f 2 )  = 0, 

where the superscript k depends on the time discretization of the fluid flow equations. 
In many aeroelastic problems, such as wing flutter, a steady flow is first computed around a structure 

in equilibrium. Next the structure is perturbed via an initial displacement and/or velocity and the 
aeroelastic response of the coupled fluidstructure system is analysed. This suggests that a natural 
sequencing for the staggered time integration of (34) is as follows. 

1. Perturb the structure via some initial conditions. 
2. Update the fluid grid to conform to the new structural boundary. 
3. Advance the flow with the new boundary conditions. 
4. Advance the structure with the new pressure load. 
5. Repeat from step (2)  until the goal of the simulation is reached. 
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An important feature of partitioned solution procedures is that they allow the use of existing single- 
discipline software modules. In this effort we are particularly interested in reusing the massively 
parallel explicit flow solver described in References 19 and 20. Therefore we select to time integrate 
the semidiscrete fluid equations with a three-step variant of the explicit Runge-Kutta algorithm. On the 
other hand, the aeroelastic response of a structure is often dominated by low-frequency dynamics. 
Hence the structural equations are most efficiently solved by an implicit time integration scheme. Here 
we select to time integrate the structural motion with the implicit midpoint rule because it allows the 
enforcement of both continuity equations (6) while still respecting the GCL (see Section 2).26 
Consequently, we propose the following explicithmplicit solution algorithm for solving the three-field 
coupled problem (34): 

Given: a steady flow and initial conditions for the structure 

1. Update the fluid grid to conform to the new structural boundary: 

Solve + + 04" + + Kt"+l = K,q" 

2 .  Advance the fluid system using RK3: 

W," + 1 (0) = w?J 
I 

3.  Advance the structural system using the midpoint rule: 
~ q f l  + ~ i j " + l  +Kqn+I = f e x t ( W n + I )  

In the sequel we refer to the above explicit'implicit staggered procedure as ALGO. It is depicted 
graphically in Figure 6 .  Extensive experiments with this solution procedure have shown that its 
stability limit is governed by the critical time step of the explicit fluid solver (and therefore is not worse 
than that of the underlying fluid explicit time integrator). 

The three-step Runge-Kutta algorithm is third-order-accurate for linear problems and second-order- 
accurate for non-linear ones. The midpoint rule is second-order-accurate. A simple Taylor expansion 
shows that the partitioned procedure ALGO is first-order-accurate when applied to the linearized 
equations (33). When applied to (34), its accuracy depends on the solution scheme selected for solving 



TIME INTEGRATION OF COUPLED AEROELASTIC PROBLEMS 819 

Q" Q"+l 

Figure 6 .  ALGO: basic staggered procedure 

the mesh equations (4). As long as the time integrator applied to (4) is consistent, ALGO is guaranteed 
to be at least first-order-accurate. 

4. SUBCYCLING 

The fluid and structure fields often have different time scales. For problems in aeroelasticity the fluid 
flow usually requires a smaller temporal resolution that the structural vibration. Therefore, if ALGO is 
used to solve (34), the coupling time step Atc will be typically dictated by the stability time step of the 
fluid system, Atfi and not the time step Ats > At, that meets the accuracy requirements of the structural 
field. 

Using the same time step At in both fluid and structure computational kernels presents only minor 
implementational advantages. On the other hand, subcycling the fluid computations with a factor 
nSiF = AtS/AtF can offer substantial computational advantages, including 

(a) savings in the overall simulation CPU time, because in that case the structural field will be 
advanced fewer times 

(b) savings in I/O transfers andor communication costs when computing on a heterogeneous 
platform, because in that case the fluid and structure kernels will exchange information fewer 
times. 

However, the computational advantages highlighted above are effective only if subcycling does not 
restrict the stability region of the staggered algorithm to values of the coupling time step At, that are 
small enough to offset these advantages. In Reference 12 it is shown that for the linearized problem 
(33) the straightforward conventional subcycling procedure-that is, the scheme where at the end of 
each nFIs fluid subcycles only the interface pressure computed during the last fluid subcycle is 
transmitted to the structurelowers the stability limit of ALGO to a value that is less than the critical 
time step of the fluid explicit time integrator. On the other hand, it is also shown in Reference 12 that 
when solving (33), the stability limit of ALGO can be preserved if (a) the deformation of the fluid mesh 
between t" and t"+' is evenly distributed among the nsm subcycles and (b) at the end of each nSIF fluid 
subcycles the average interface pressure fieldPr,, computed during the subcycles between t" and t"+' 
is transmitted to the structure. Hence we propose the following explicithmplicit fluid-subcycled 
partitioned procedure for solving (34): 
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($1 s=ns/p 1. Construct {q" )s=l 

PrFIS = 0 

{ 

such that q@lF) = q" 
- 

For s = 1, . . . , IZS/F 

la. Update in stages the fluid grid to conform to the new structural boundary: 

solve ~ i j "  + 1 6 )  + bin + + ~ ' 5 "  + I(') = Kcq no) 

2. Advance the fluid system using RK3: 

yn + 1(0)") = wino) 

3. Advance the structural system using the midpoint rule: 

In the sequel we refer to the above explicithmplicit fluid-subcycled staggered procedure as ALGl . It 
is depicted graphically in Figure 7. Extensive numerical experiments have shown that for small values 
of nSm the stability limit of ALGl is governed by the critical time step of the explicit fluid solver. 

Figure 7. ALGl: subcycling 
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However, experience has also shown that there exists a maximum subcycling factor beyond which 
ALG 1 becomes numerically unstable. 

From the theory developed in Reference 12 for the linearized equations (33), it follows that ALGl is 
first-order-accurate and that, as one would have expected, subcycling amplifies the fluid errors by the 
factor nsB. 

5 .  INTERFIELD PARALLELISM 

ALGO and ALGl are inherently sequential. In both partitioned procedures the fluid system must be 
updated before the structural system can be advanced. Of course, ALGO and ALGl allow intrafield 
parallelism (parallel computations within each discipline) but inhibit interfield parallelism. Advancing 
the fluid and structural systems simultaneously is appealing because it can reduce the total simulation 
time. 

A simple variant ALG2 of ALGl (or ALGO if subcycling is not desired) that allows interfield 
parallel processing is given below: 

1. Construct q n ( s ) ~ ~ ~  such that q ( n S / F )  = q" 

PTFIS = 
- 

Fors=  1, ..., nS/F 

{ 
la. Update in stages the fluid grid to conform to the ew structural bounda 

2. Advance the fluid system using RK3: 

K n  + I(')(') = y n ( s )  

1: 



A

pn+l - - 

3. Advance the structural system using the midpoint rule: 
rFjs - PrF,S/nS/F 

~g + 1 + Dqn + 1 + Kq" + 1 =fext@;,,,) 

Clearly the fluid and structure kernels can run in parallel during the time interval [t,, tn+ns,p]. Interfield 
communication or I/O transfer is needed only at the beginning of each time interval. 

The basic steps of ALG2 are depicted graphically in Figure 8. The theory developed in Reference 12 
shows that for the linearized equations (33), ALG2 is first-order-accurate and parallelism in ALG2 is 
achieved at the expense of amplified errors in the fluid and structure responses. 

In order to improve the accuracy of the basic parallel time integratgor ALG2, we propose to 
exchange information between the fluid and structure kernels at half-step in the following specific 
manner (ALG3): 
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ALG3 is illustrated in Figure 9. The first half of the computation is identical with that of ALG2, except 
that the fluid system is subcycled only up to Pns/F/2 while the structure is advanced in one shot up to 
tnfnslF. At P n s I F  /2 the fluid and structure kernels exchange pressure, displacement and velocity 
information. In the second half of the computation the fluid system is subcycled from tn+"s/F/2 to 
P n s l F  using the new structural information and the structural behaviour is recomputed in parallel using 
the newly received pressure distribution. Note that the first evaluation of the structural state vector 
@+I can be interpreted as a predictor. 
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Figure 8. ALGZ: subcycling and interfield parallelism 

It can be shown that when applied to the linearized equations (33), ALG3 is first-order-accurate 
and reduces the errors of ALG2 by the factor nsE at the expense of one additional communication 
step or VO transfer during each coupled cycle (see Reference 12 for a detailed error analysis). 

6. IMPLEMENTATIONAL ISSUES 

6. I. Subcycling 

We have pointed out in Section 4 that when subcycling is desired, the deformation of the fluid mesh 
between t" and f+' should not be entirely applied during the first fluid subcycle, but evenly distributed 
across all subcycling stages. There are many ways this can be accomplished, including the following 
one. 

At the beginning of time step f+' the fluid code has access to the component of the structural state 
vector (q", q)rF,s that relates to the degrees of freedom located at the fluidstructure interface. The 
objective of any mesh updating strategy is to exploit this information and compute a fluid mesh 
position (?"" that satisfies the continuity equations (6): 

At this point it should be noted that the difference in the superscripts between the left- and right-hand 
sides of (39) is due to the staggered nature of the solution scheme and that the second equation of (39) 
should be enforced only if it does not violate the GCL. Using equations (39) as constraints, an updated 
fluid mesh position g"+' can be obtained e.g. via the solution of (4). Then at eve% subcycling stage a 
new constraint can be generated for computing the subcycled mesh position via the solution of 
(4) as follows: 

Figure 9. ALG3: subcycling, interfield paraflelism and improved accuracy 
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Figure 10. Incompatible fluid and structural meshes 

where f is an interpolation scheme of order d = 0, 1, 2. More specifically, P is given by and leads to 

t n  + 
rF/S  ='FF/S (d = O), 

In practice we have found that the I1 ( tF;r - ' ) ,  qFFJ interpolation scheme is the best choice. This 
scheme does not require the transmission of any structural velocity information to the fluid 
computational kernel. In all cases the fluid mesh velocity is computed via (26) to satisfy the GCL. 

6.2. Incompatible mesh interfaces 

In general the fluid and structure meshes have two independent representations of the physical fluid/ 
structure interface. When these representations are identical, e.g. when every fluid grid point on rF,S is 



826 C. FARHAT, M. LESOINNE AND N. MAMAN 

Figure 1 1 ,  Gauss point-fluid cell pairing 

also a structural node and vice versa, the evaluation of the pressure forces and the transfer of the 
structural motion to the fluid mesh are trivial operations. However, analysts usually prefer to 

(a) use a fluid mesh and a structural model that have been independently designed and validated 
(b) refine each mesh independently from the other. 

Hence most realistic aeroelastic simulations will involve handling fluid and structural meshes that are 
incompatible at their interface boundaries (Figure 10). In Reference 27 we have addressed this issue 
and proposed a preprocessing ‘matching’ procedure that does not introduce any approximation other 
than those intrinsic to the fluid and structure solution methods. This procedure can be summarized as 
follows. 

The nodal forces induced by the fluid pressure on the ‘wet’ surface of a structural element e can be 
written as 

where rice) denotes the geometrical support of the wet surface of the structural element e, p is the 
pressure field, v is the unit normal to fi(e) and N, is the shape function associated with node i. Most if 

Figure 12. Fluid grid point-wet structural element pairing 
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not all finite element structural codes evaluate the integral in (42) via a quadrature rule 

827 

where wg is the weight of the Gauss point X,. Hence a structural code needs to know the values of the 
pressure field only at the Gauss points of its wet surface. This information can be easily made available 
once every Gauss point of a wet structural element is paired with a fluid cell (Figure 11). It should be 
noted that in (43) the X, are not necessarily the same Gauss points as those used for stifhess 
evaluation. For example, if a high pressure gradient is anticipated over a certain wet area of the 
structure, a larger number of Gauss points can be used for the evaluation of the pressure forces Fi on 
that area. 

On the other hand, when the structure moves and/or deforms, the motion of the fluid grid points on 
rFIS can be prescribed via the regular finite element interpolation 

where Sj, wne, and q k  denote respectively a fluid grid point on rFls, the number of wet nodes in its 
‘nearest’ structural element e, the natural co-ordinates of in rice) and the structural displacement at 
the kth node of element e. From (44) it follows that each fluid grid point on rFIS must be matched with 
one wet structural element (Figure 12). 

Given a fluid grid and a structural model, the Matcher programme described in Reference 27 
generates all the data structures needed to evaluate the quantities in (43) and (44) in a single 
preprocessing step. 

6.3. Intrajeld parallel processing 

Aeroelastic simulations are known to be computationally intensive and therefore can benefit from 
the parallel processing technology. An important feature of a partitioned solution procedure is 
preservation of software modularity. Hence all the solution procedures ALGO, ALGl, ALG2 and 
ALG3 can use existing computational fluid dynamics and computational structural mechanics parallel 
algorithms. The solution of the mesh motion equations (4) can be easily incorporated into an existing 
fluid code and its parallelization is no more difficult than that of a finite element structural algorithm. 

Our approach to parallel processing is based on the mesh partitioning/message passing paradigm, 
which leads to a portable software design. Using an automatic mesh partitioning algorithm,28329 we 
decompose both fluid and structural meshes into subdomains. The same ‘old’ serial code is executed 
within every subdomain. The ‘gluing’ or assembly of the subdomain results is implemented in a 
separate software module. This approach enforces data locality21 and therefore is suitable for all 
parallel hardware architectures. Note that in this context, message passing refers to the assembly phase 
of the subdomain results. It does not imply that messages have to be explicitly exchanged between the 

Figure 13. Flat panel with infinite aspect ratio 
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Figure 14. Discretization of flow domain (partial view) 

Figure 15.  Mesh incompatibility 
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subdomains. For example, message passing can be implemented on a shared memory multiprocessor 
as a simple access to a shared buffer or as a duplication of one buffer into another. 

6.4. Interjield parallel processing 

Using the message passing paradigm, interfield parallel processing can be implemented in the same 
manner as intrafield multiprocessing. The fluid and structure codes can run either on different 
sequential or parallel machines or on a different partition of the same multiprocessor. Any software 
product such as PVM3' can be used to implement message passing between the two computational 
kernels. 

7. APPLICATION TO FLAT PANELS IN SUPERSONIC AIRSTREAMS 

Here we demonstrate the aeroelastic computational methodology described in the previous sections 
with the numerical investigation on an iPSC-860 massively parallel processor of the instability of flat 
panels with infinite aspect ratio in supersonic  airstream^.^^ 

The flat panel with infinite aspect ratio (Figure 13) is assumed to have a length L = 0.5 m, a uniform 
thickness h = 1.35 x m, a Young modulus E = 7.728 x 10" N/m-2, a Poisson ratio p = 0.33, a 
density p = 2710 kg m-3 and to be clamped at both ends. Its rectangular cross-section is discretized 
into 11 1 1 x 3 plane strain four-node elements. This fine discretization, which generates 3333 elements 
with perfect aspect ratios and 4448 nodes, is not needed for accuracy; we have designed this structural 
mesh only because we are also interested in assessing some computational and VO performance issues. 

The two-dimensional flow domain above the panel is discretized into 32,568 triangles and 16,512 
vertices (Figure 14). A slip condition is imposed at the fluidstructure boundary. 

Because the fluid and structural meshes are not compatible at their interface (Figure 15), the Matcher 
so&vare*' is used to generate in a single preprocessing step the data structures required for transferring 
the pressure load to the structure and the structural deformations at the upper surface of the panel to the 
fluid. 

We consider several supersonic flows at different Mach numbers and discuss the performances of 
ALGO, ALG1, ALG2, and ALG3. Whenever subcycling is used, the Z' interpolation scheme is used to 
prescribe the motion of the fluid grid points on rF,s. 

7.1. Thejluid solver 

The Euler flow equations (2) are solved with a second-order-accurate finite volume monotonic 
upwinding scheme for conservation laws (MUSCL)32 on fully unstructured grids. The resulting 
semidiscrete equations are time integrated with a second-order low-storage explicit Runge-Kutta 
method. The details of this explicit unstructured flow solver can be found in References 19 and 20. 

7.2. The mesh motion solver 

In this work the unstructured dynamic fluid mesh is represented by the pseudostructural model of 
Batina (a= b = 0). A fictitious linear spring is assigned to each edge connecting two fluid grid points 
S, and and is attributed the stiffness 
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Figure 16. Pressure isovalues for steady state flow solution 

The grid points located on the upstream and downstream boundaries are helb fixed. The motion of 
those points located on rFIS is determined from the panel surface motion andor deformation. At each 
time step f+' the new position of the interior grid points is determined from the solution of the 
displacement-dnven pseudostructural problem (4) via a two-step iterative procedure. First the 
displacements of the interior grid points are predicted by extrapolating the previous displacements at 
time steps t" and t"-' in the following manner: 

where A"< = 
on the static equilibrium equations: 

- 5". Next the predicted values are corrected with a few explicit Jacobi relaxations 

Finally the position of the fluid grid points at t"+' is computed as follows: 

Figure 17. Initial perturbation of panel displacement field 
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Figure 18. Lit? coefficient history for nSm = 30 

7.3. The structural solver 

The structural equations of dynamic equilibrium (8) are solved with the parallel implicit transient 
finite element tearing and interconnecting (FETI) method.33 Because it is based on a midpoint rule 
formulation, this method allows the enforcement of both continuity equations (6) while still respecting 
the GCL. The resistance of the structure to displacements in the plane of the skin is assumed to be 
small. Consequently, all panel flutter computations can be performed with a linearized structural 
theory. Since the FETI solver is a domain-decomposition-based iterative solver, we also use the special 
restarting procedure proposed in Reference 34 for the efficient iterative solutiogof linear systems with 
repeated right-hand sides. 

7.4. The computational platform 

All computations are performed on an iPSC-860 parallel processor using double-precision 
arithmetic. The fluid and structure solvers are implemented as separate programmes that communicate 
via the intercube communication procedures described in Reference 35. 

Table 1. Performance results on iPSC-860 

Elapsed time for 4102 fluid time steps (s) 

Fluid 
Algorithm (64 processors) ( & f E i z o r s )  Fluid - wait + ICC Total CPU 

ALGO 261 7.23 1267.93 
ALGl (AS/F= 10) 2625.1 1 126.67 
ALG2 (nSIF = 5) 2643.57 253.34 
ALG3 (nsm = 10) 2603.56 253.23 

1283.10 3900.33 
127.90 2753.01 

1.67 2645.24 
1.37 2604.93 
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Figure 19 Lift coefficient history for a fixed level of accuracy 

7.5. Assessment of the partitioned procedures 

In order to illustrate the relative merits of the partitioned procedures ALGO, ALGl, ALG2 and 
ALG3, we first consider two different series of transient aeroelastic simulations at Mach number 
M ,  = 1.90 that highlight 

(a) the relative accuracy of these algorithms for a fixed subcycling factor nsm 
(b) the relative speed of these algorithms for a fixed level of accuracy on both sequential and 

In all cases 64 processors are allocated to the fluid system and two processors are assigned to the 
structural solver. Initially a steady state flow is computed above the panel at M ,  = 1.90 (Figure 16), a 
speed at which the panel described above is not supposed to flutter. Then the aeroelastic response of the 
coupled system is triggered by a displacement perturbation of the panel along its first mode (Figure 17). 

First the subcycling factor is fixed at nsm = 30 and the lift coefficient is computed using the time 
step At = 3.9 x lop6 corresponding to the stability limit of the explicit flow solver in the absence of 
coupling with the structure. The obtained results are depicted in Figure 18 for the first 4102 time steps. 
For nsF = 30, ALGl and ALG3 exhibit essentially the same accuracy. In the long run their amplitude 
and phase errors are less important than those of ALG2. Clearly this highlights the superiority of 
ALG3, which, despites it interfield parallelism and unlike ALG2, is capable of delivering the same 
accuracy as the sequential algorithm ALGl. 

Next the relative speed of the focus partitioned solution procedures is assessed by comparing their 
CPU performance for a certain level of accuracy dictated by ALGO. It turns out that in order to meet 
the accuracy requirements of ALGO, both ALGl and ALG3 can use a subcycling factor as large as 
nsm = 10 but ALG2 can subcycle only up to nsf f  = 5 (Figure 19). 

The performance results measured on the iPSC-860 are reported in Table I, where ICC denotes the 
intercube communication time. Note that ICC is measured in the fluid kernel and includes idle time 
when the flow and structural communications do not overlap. 

parallel computational platforms. 
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Lift coenicienl history at varying Mach numbers 
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Figure 20 Flutter analysis 

From the results reported in Table I, the following observations can be made. 

1. The fluid computations dominate the simulation time. This is partly because the structural model 
is simple in this case and a linear elastic behaviour is assumed for the panel. 

2. Considering that the iPSC-860 has 128 processors and that only clusters of 2" processors can be 
defined on this machine, allocating 64 processors to the fluid and two processors to the structure 
achieves the minimum possible interfield load imbalance for this coupled problem. 

3. The effect of subcycling on intercube communication costs is clearly demonstrated. Because the 
flow solution time is dominating, the effect of subcycling on the total CPU time is less important 
for ALG2 and ALG3 which feature interfield parallelism in addition to intrafield multiprocessing 
than for ALGl which features intrafield parallelism only (note that ALGl with nsm = 1 is 
identical with ALGO). 

4. ALG2 and ALG3 allow a perfect overlap of interfield communications, which reduces intercube 
communication and idle time to less than 0.3 per cent of the amount corresponding to ALGO. 

5. The superiority of ALG3 over ALG2 is not clearly demonstrated for this problem because of the 
simplicity of the structural model and the subsequent load imbalance between the fluid and 
structure computations. 

7.6. Panel flutter 

The classical and analytical solution of the instability problem of flat panels with infinite aspect ratio 
in supersonic airstreams assumes a shallow shell theory for the structure and a linearized formulation 
for the flow problem (piston theory). Within this analytical approach the dynamics of the focus coupled 
fluidstructure system are governed by a fourth-order partial differential equation (Reference 3 1, p. 
419) and the flutter condition is obtained by analysing the roots of the corresponding characteristic 
equation. For the panel described at the beginning of Section 7, the classical linear theory predicts 
flutter at the critical Mach number M z  = 1.98. The objective of this subsection is to validate the 
aeroelastic simulation capability presented in this paper by reproducing the theoretical critical Mach 
number for the given panel. Note that in order to compare the analytical and finite element approaches, 
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the coefficients of the shallow shell equation described in Reference 3 1, p. 419, must be computed to 
represent the same equation as that corresponding to the finite element model used in this paper. 

Four different runs at M ,  = 2.0, 2-05, 2.095 and 2.1 3 are performed using ALG3. For each run a 
steady state flow is first computed. Then a displacement perturbation of the panel along its first mode 
(Figure 17) is imposed and the aeroelastic response of the coupled system is computed. The predicted 
time histories of the lift coefficient are depicted in Figure 20 for all four cases. 

From the results reported in Figure 20, it follows that the flutter speed predicted by our formulation 
verifies 2.05 < M z  < 2.095. Hence this flutter speed is 4.5 per cent higher than that predicted by the 
piston theory. This is a rather good agreement given that the piston theory and the computational 
approach presented herein do not share exactly the same approximations. 

8. CLOSURE 

In this paper we have presented several explicit (fluid)/implicit (structure) partitioned procedures for 
time integrating transient coupled aeroelastic problems, including one parallel coupling strategy with 
superior accuracy properties. We have discussed their merits in terms of accuracy, stability, 
heterogeneous computing, 110 transfers, subcycling and parallel processing. We have also described a 
general and flexible framework for implementing these solution procedures on heterogeneous andor 
parallel computational platforms. This framework and the explicithmplicit algorithms have been 
demonstrated with the numerical investigation on an iPSC-860 massively parallel processor of the 
instability of flat panels with infinite aspect ratio in supersonic airstreams. 
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